eCommons

 

A Consistent and Complete Deductive System for the Verification of Parallel Programs

Other Titles

Abstract

The semantics of a simple parallel programming language is presented in two ways: deductively, by a set of Hoare-like axioms and inference rules, and operationally, by means of an interpreter. It is shown that the deductive system is consistent with the interpreter. It would be desirable to show that the deductive system is also complete with respect to the interpreter, but this is impossible since the programming language contains the natural numbers. Instead it is proven that the deductive system is complete relative to a complete proof system for the natural numbers; this result is similar to Cook's relative completeness for sequential programs. The deductive semantics given here is an extension of an incomplete deductive system proposed by Hoare. The key difference is an additional inference rule which provides for the introduction of auxiliary variables in a program to be verified.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1976-05

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR76-278

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record