eCommons

 

Pseudospectra of Linear Operators

Other Titles

Abstract

The following contains mathematical formulae and symbols that may become distorted in ASCII text format. The advent of ever more powerful computers has brought with it a new way of conceiving some of the fundamental eigenvalue problems of applied mathematics. If a matrix or linear operator "A" is far from normal, its eigenvalues or more generally its spectrum may have little to do with its behavor as measured by quantities such as ||AN|| or ||exp(tA)||. More may be learned by examining the sets in the complex plane known as the "pseudospectra" of A, defined by level curves of the norm of the resolvent, ||(zI - A)-1||. Five years ago, the author published a paper that presented computed pseudospectra of thirteen highly non-normal matrices arising in various applications. Since that time, analogous computations have been carried out for differential and integral operators. This paper, a companion to the earlier one, presents ten examples, each chosen to illustrate one or more mathematical or physical principles.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1995-12

Publisher

Cornell University

Keywords

theory center

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.tc/95-226

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record