Freeze-Casting For Facile Synthesis Of Novel Porous Materials

Other Titles


Freeze-casting is a method of synthesizing porous materials from mixtures comprised of a dispersed phase (colloidal and/or solutal) and a liquid dispersant, typically water. Cooling the mixture to temperatures below the freezing point of water causes nucleation and growth of ice crystals along the thermal gradient. Exclusion of the dispersed phase results in the formation of two interpenetrating networks upon complete solidification of the water - one made from ice, the other comprised of the rejected colloid and/or solute. Removal of the ice via freeze-drying produces a structure made from the excluded phase, with micron-sized pores created by the ice template. This work will address the use of freeze-casting for facile synthesis of porous structures with tunable porosity, mechanical properties, and structural (bonding) order. The first part of this work is concerned with the use of freeze-casting in the preparation of porous scaffolds prepared from poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate), PEDOT:PSS, a semiconducting polymer complex. Aqueous dispersions of PEDOT:PSS were freeze-cast under a variety of conditions to examine the impact of dispersion concentration/composition and freezing conditions on the morphology and mechanical properties of the scaffold. Finally, PEDOT:PSS monoliths with appropriate porosity and mechanical robustness were used to study the electrical control of cell deposition in a 3D matrix. ! The remainder of this work addresses the use of freeze-casting for the synthesis of hierarchical porous carbons (HPCs) prepared from various organic precursors. Hierarchical structure is generated through the use of an ice template, colloidal SiO2, and physical activation of the carbon. The impact of carbon precursor (glucose, sucrose, resorcinol, and resorcinol formaldehyde), SiO2 template, and freeze-casting conditions on the morphology and structural order was examined. Interestingly, the dispersion composition impacted the porosity generated by both the ice template and SiO2 particles via behavior akin to constitutional supercooling as observed in alloys. Additionally, the templating efficacy of the colloidal SiO2 was found to impact the structural order observed in the as-produced carbon. !

Journal / Series

Volume & Issue



Date Issued




Materials Science; Freeze Casting; Porous Materials


Effective Date

Expiration Date




Union Local


Number of Workers

Committee Chair

Giannelis,Emmanuel P

Committee Co-Chair

Committee Member


Degree Discipline

Materials Science and Engineering

Degree Name

Ph. D., Materials Science and Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)


Link(s) to Reference(s)

Previously Published As

Government Document




Other Identifiers


Rights URI


dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record