Anonymous Gossip: Improving Multicast Reliability in Mobile Ad-HocNetworks
Loading...
No Access Until
Permanent Link(s)
Collections
Other Titles
Abstract
In recent years, a number of applications of ad-hoc networks have been proposed. Many of them are based on the availability of a robust and reliable multicast protocol. In this paper, we address the issue of reliability and propose a scalable method to improve packet delivery of multicast routing protocols and decrease the variation in the number of packets received by different nodes. The proposed protocol works in two phases. In the first phase, any suitable protocol is used to multicast a message to the group, while in the second concurrent phase, the gossip protocol tries to recover lost messages. Our proposed gossip protocol is called Anonymous Gossip(AG) since nodes need not know the other group members for gossip to be successful. This is extremely desirable for mobile nodes, that have limited resources, and where the knowledge of group membership is difficult to obtain. As a first step, anonymous gossip is implemented over MAODV without much overhead and its performance is studied. Simulations show that the packet delivery of MAODV is significantly improved and the variation in number of packets delivered is decreased.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2001-02-06
Publisher
Cornell University
Keywords
computer science; technical report
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR2001-1836
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report