eCommons

 

Efficiency Improvements for Pricing American Options with a Stochastic Mesh

Other Titles

Abstract

rlo simulation. First, we develop a mesh-based, biased-low estimator. By recursively averaging the low and high estimators at each stage, we obtain a significantly more accurate point estimator at each of the mesh points. Second, adapt the importance sampling ideas for simulation of European path-dependent options in Glasserman, Heidelberger, and Shahabuddin (1998a) to pricing of American options with a stochastic mesh. Third, we sketch generalizations of the mesh method and we discuss links with other techniques for valuing American options. Our empirical results show that the bias-reduced point estimates are much more accurate than the standard mesh-method point estimators. Importance sampling is found to increase accuracy for a smooth option-payoff functions, while variance increases are possible for non-smooth payoffs.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2003-01-23

Publisher

Cornell University

Keywords

theory center

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.tc/2003-287

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record