eCommons

 

Regularly varying random fields and analyses of extremal clusters

Other Titles

Author(s)

Abstract

The notion of regular variation is a common way to model the extreme events. While many researches have been conducted to study the regularly varying time series, its higher dimensional extension has not been well studied. In this work, we first study the extremes of multivariate regularly varying random fields using the tail field and the spectral field, notions that extend the tail and spectral processes of Basrak and Segers (2009). We discuss several properties and the limit theorems for the related point processes. The spatial context requires multiple notions of extremal index, and the tail and spectral fields are applied to clarify these notions and other aspects of extremal clusters. An important application of the techniques we develop is to the Brown-Resnick random fields. Next, we talk about the shapes of the extremal clusters. We first define the most likely clusters and provide some examples as an illustration. We discuss how the choice of the threshold level affects extremal clusters geographically. A special type of regularly varying random field we focus on is the shot noise model. Also, we introduce the duration of an extreme event and develop its limiting distribution. Extremal clusters are not only helpful in understanding extremes, but it also helps in the task such as understanding the underlying process. We provide a new way to estimate the parameters of AR(p) process with regularly varying noises using extremal clusters. Combined with a clustering (classification) algorithm, we are able to detect the regime changes and group different extremal clusters.

Journal / Series

Volume & Issue

Description

129 pages

Sponsorship

Date Issued

2020-08

Publisher

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Samorodnitsky, Gennady

Committee Co-Chair

Committee Member

Matteson, David
Grigoriu, Mircea Dan

Degree Discipline

Operations Research and Information Engineering

Degree Name

Ph. D., Operations Research and Information Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record