Show simple item record

dc.contributor.authorWalter, Bruceen_US
dc.date.accessioned2007-04-23T18:14:14Z
dc.date.available2007-04-23T18:14:14Z
dc.date.issued1998-08en_US
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR98-1700en_US
dc.identifier.urihttps://hdl.handle.net/1813/7354
dc.description.abstractIn this thesis we present the density estimation framework for computing view-independent global illumination solutions. The framework consists of three phases: particle tracing, density estimation, and decimation. Monte Carlo particle tracing is used to accurately simulate the light transport under a general spectral geometric-optics based physical model. Next kernel density estimation is used to reconstruct perceptual illumination functions. Finally decimation is used to optimize the resulting mesh for compactness and rapid interactive display as Gouraud-shaded triangles. The three principal contributions of this work are the framework's separation of transport and function reconstruction computations, its ability to produce accurate solutions with precisely known error characteristics, and the techniques that we introduce to improve its efficiency and accuracy. Particle tracing's generality allows us to eliminate or delay many common simplifying assumptions and improves our accuracy and error analysis. Delaying the density estimation until particle tracing is complete allows us to make better use of the expensive particle data. The separation of global transport and local representation computations also reduces the computational complexity of each phase, enhances the framework's scalability, and exposes abundant opportunities for parallelism. Another advantage is that we can solve directly for the radiant exitance without needing to estimate the more complicated spectral radiance function. Despite its advantages, if naively implemented the framework would be prohibitively expensive. Thus we also introduce several techniques that significantly improve its accuracy and efficiency. These include the separation of luminance and chromaticity bandwidths, perceptually-motivated noise visibility predictors, statistical bias detection techniques to automatically enhance underresolved illumination features, a local polynomial density estimation method to eliminate boundary bias, and wavelength importance sampling to reduce the spectral noise. Results of the framework are shown for some complex environments and compared against measured data for a simple scene. The strength of our framework is that it can simulate a wider variety of lighting effects, with fewer simplifying assumptions, and more precise error analysis that current view-independent methods. Furthermore, because of its accuracy, our density estimation framework solutions are used as reference solutions for judging the quality and effectiveness of more approximate but faster rendering methods.en_US
dc.format.extent2501962 bytes
dc.format.extent40626256 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titleDENSITY ESTIMATION TECHNIQUES FOR GLOBAL ILLUMINATIONen_US
dc.typetechnical reporten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics