Show simple item record

dc.contributor.authorLi, Pak Hin
dc.date.accessioned2020-08-10T20:24:12Z
dc.date.available2020-08-10T20:24:12Z
dc.date.issued2020-05
dc.identifier.otherLi_cornellgrad_0058F_11944
dc.identifier.otherhttp://dissertations.umi.com/cornellgrad:11944
dc.identifier.urihttps://hdl.handle.net/1813/70416
dc.description45 pages
dc.description.abstractLet Q be a finite type quiver i.e. ADE Dynkin quiver. Denote by \Lambda its preprojective algebra. It is known that there are finitely many indecomposable \Lambda-modules if and only if Q is of type A1, A2, A3, A4. Extending Lusztig’s construction of Un, we study an algebra generated by these indecomposable submodules. It turns out that it forms the universal enveloping algebra of some nilpotent Lie algebra inside the function algebra on Lusztig’s nilpotent scheme. The defining relations of the corresponding nilpotent Lie algebra for type A1, A2, A3, A4 are given here.
dc.language.isoen
dc.subjectalgebra
dc.subjectlie algebra
dc.subjectrepresentation theory
dc.titleA Hopf Algebra from Preprojective Modules
dc.typedissertation or thesis
thesis.degree.disciplineMathematics
thesis.degree.grantorCornell University
thesis.degree.levelDoctor of Philosophy
thesis.degree.namePh. D., Mathematics
dc.contributor.chairKnutson, Allen
dc.contributor.committeeMemberBerest, Yuri
dc.contributor.committeeMemberStillman, Michael
dcterms.licensehttps://hdl.handle.net/1813/59810
dc.identifier.doihttps://doi.org/10.7298/6t96-an97


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics