JavaScript is disabled for your browser. Some features of this site may not work without it.
Language Learning without Overgeneralization

Author
Kapur, Shyam; Bilardi, Gianfranco
Abstract
Language learnability is investigated in the Gold paradigm of inductive inference from positive data. Angluin gave a characterization of learnable families in this framework. Here, learnability of families of recursive languages is studied when the learner obeys certain natural constraints. Exactly learnable families are characterized for prudent learners with the following types of constraints: (0) conservative, (1) conservative and consistent, (2) conservative and responsive, and (3) conservative, consistent, and responsive. The class of learnable families is shown to strictly increase going from (3) to (2) and from (2) to (1), while it stays the same going from (1) to (0). It is also shown that, when exactness is not required, prudence, consistency and responsiveness, even together, do not restrict the power of conservative learners.
Date Issued
1990-11Publisher
Cornell University
Subject
computer science; technical report
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR90-1168
Type
technical report