Show simple item record

dc.contributor.authorBilardi, Gianfrancoen_US
dc.contributor.authorMoitra, Abhaen_US
dc.date.accessioned2007-04-23T17:36:48Z
dc.date.available2007-04-23T17:36:48Z
dc.date.issued1989-05en_US
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR89-1012en_US
dc.identifier.urihttps://hdl.handle.net/1813/6812
dc.description.abstractIt is shown that the time to compute a monotone boolean function depending upon $n$ variables on a CREW-PRAM satisfies the lower bound $T = \Omega$(log $l$ + (log $n$)/$l$), where $l$ is the size of the largest prime implicant. It is also shown that the bound is existentially tight by constructing a family of monotone functions that can be computed in $T = O$(log $l$ + (log $n$)/$l$), even by an EREW-PRAM. The same results hold if $l$ is replaced by $L$, the size of the largest prime clause. An intermediate result of independent interest is that $S (n,l)$, the size of the largest minimal vertex cover minimized over all (reduced) hypergraphs of $n$ vertices and maximum hyperedge size $l$, satisfies the bounds $\Omega(n^{1/l}) \leq S (n,l) \leq O (ln^{1/l}).$en_US
dc.format.extent1526133 bytes
dc.format.extent365847 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titleTime Lower Bounds for CREW-PRAM Computation of Monotone Functionsen_US
dc.typetechnical reporten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics