eCommons

 

A Provably Good Approximation Algorithm for Optimal-Time Trajectory Planning

Other Titles

Abstract

We consider the following problem: given a robot system, find a minimal-time trajectory from a start position and velocity to a goal position and velocity, while avoiding obstacles and respecting dynamic constraints on velocity and acceleration. Based on the theoretical results of [CDRX], we have developed and implemented a new, provably good approximation algorithm for the minimum-time trajectory problem. Our algorithm differs from previous work in three ways. First, it is possible to bound the goodness of the approximation by an error term ϵ. Second, we can polynomially bound the running time (complexity) of our algorithm. Third, we can express the complexity as a polynomial function of the error term. Hence, one supplies the algorithm with the geometric obstacles, dynamics bounds, and the error term ϵ. The algorithm returns a solution that is ϵ-close to optimal, and promises to spend only a polynomial (in (1ϵ)) amount to time computing the answer. In this paper, we describe the algorithm and explain the results in simple terms. We show how it can be applied to robotics, and report on an implementation and experiments.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1988-11

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR88-947

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record