eCommons

 

Fine-Grain Compilation for Pipelined Machines

Other Titles

Abstract

Computer architecture design requires careful attention to the balance between the complexity of code scheduling problems and the cost and feasibility of building a machine. In this paper, we show that recently developed software pipelining algorithms produce optimal or near-optimal code for a large class of loops when the target architecture is a clean pipelined parallel machine. The important feature of these machines is the absence of structural hazards. We argue that the robustness of the scheduling algorithms and relatively simple hardware make these machines realistic and cost-effective. To illustrate the delicate balance between architecture and scheduling complexity, we show that scheduling with structural hazards is NP-hard, and that there are machines with simple structural hazards for which vectorization and the software pipelining techniques generate poor code.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1988-08

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR88-934

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record