eCommons

 

DESIGN, SYNTHESIS, AND CHARACTERIZATION OF NOVEL MATERIALS FOR HIGH-PERFORMANCE LITHIUM-SULFUR BATTERIES

Other Titles

Author(s)

Abstract

With ever-increasing energy demands, tremendous efforts have been devoted to developing rechargeable batteries. Conventional lithium-ion batteries have been widely used for decades, but are approaching their theoretical limit and are unable to meet the rising energy demands. Lithium–sulfur (Li–S) batteries are being actively pursued owing to their high energy density and cost-effectiveness. However, the commercial implementation of Li–S batteries has been impeded by the challenges associated with the sulfur cathodes, including extremely low conductivity, large volumetric expansion and rapid capacity loss arising from the dissolution of the intermediates, and the Li anode, owing to the uncontrollable formation of Li dendrites. To fulfill the promise of Li–S batteries as high-energy devices, it is necessary to solve these issues. In this dissertation, effective materials as sulfur hosts have been studied and possible strategies to improve the performance of the sulfur cathode proposed. These involve designing the structure of the host material to efficiently accommodate sulfur and, at the same time, applying the strong adsorption properties between the active material and the host. As to the Li anode, approaches to suppress the growth of Li dendrites were demonstrated by coating the surface of the anode current collector. These strategies were successful in inhibiting Li dendrites and significantly improve the performance of Li anodes. These studies provide promising results for high-performance Li–S batteries for future large-scale applications.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2019-08-30

Publisher

Keywords

Energy; Lithium; lithium dendrite; Chemistry; Battery; Sulfur

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Abruna, Hector D.

Committee Co-Chair

Committee Member

Disalvo, Francis J.
Hanrath, Tobias

Degree Discipline

Chemistry and Chemical Biology

Degree Name

Ph.D., Chemistry and Chemical Biology

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record