eCommons

 

DFT study of the complex diffusion of oxygen in cobalt & Machine learning of ab-initio energy landscapes for crystal structure predictions

Other Titles

Abstract

Point defects in solids are important because they can have a large influence on the mechanical, electronic, and optical properties. One of the most ubiquitous defects in metals is oxygen. Here, we use DFT to show that all three stable phases of cobalt display complex defect structures in the presence of oxygen. We calculate defect formation energies and migration barriers to elucidate the dominant diffusion mechanisms in these systems. In close packed hcp and fcc cobalt, we find that oxygen interstitials strongly reacts with vacancies to form split-vacancy centers, which provide an alternate diffusion mechanism for vacancies and oxygen. Diffusion in epsilon-cobalt follows a completely different route, occurring via a concerted indirect-exchange mechanism. We also present a machine learning approach for quick and accurate prediction of formation energies of compounds in the context of crystal structure predictions. Typical methods such as genetic algorithms often rely on DFT codes to perform such calculations at a relatively high computational cost. We illustrate a new means of representing crystal structures using radial and angular distribution functions and demonstrate two machine learning models capable of yielding low prediction errors of a few meV across the entire composition and phase space in binary systems. The high predictive accuracies make our models excellent candidates for the exploration of energy landscapes.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2019-05-30

Publisher

Keywords

DFT; Materials Science; Formation energies; Point defects; Radial distribution functions; Kinetics; machine learning

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Hennig, Richard G.

Committee Co-Chair

Committee Member

Robinson, Richard Douglas
Bindel, David S.

Degree Discipline

Materials Science and Engineering

Degree Name

Ph.D., Materials Science and Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record