eCommons

 

INTERSTITIAL FLOWS MODULATE BREAST TUMOR CELL INVASION USING A 3D MICROFLUIDIC MODEL

Other Titles

Abstract

Tumor cell invasion through the extracellular matrix (ECM) is a critical step in the cancer metastatic cascade. Along the way from primary tumor to a distant metastatic site, tumor cells interact actively with the microenvironment either via biophysical or biochemical signals. It is now indisputable that the tumor microenvironment (TME) is as important as the genetic makeup of the tumor in regulating tumor invasion. To date, roles of biophysical cues within the TME, apart from matrix stiffness and architecture, in tumor invasion are poorly understood. Interstitial flows (IFs) are ubiquitous in maintaining tissue homeostasis in living systems, and are known to be elevated in malignant tumors due to the abnormal vasculature developed within the tumor. My dissertation focuses on revealing roles of IFs in breast tumor cell invasion using a newly developed 3D microfluidic platform and optical imaging. This dissertation contains four main parts. First, I reviewed current understanding on the subject of TME in tumor invasion. Second, I presented work on the development of a microfluidic platform that provided well defined IFs to cells or spheroids embedded within a type I collagen matrix. Third, I studied roles of IFs in modulating invasion characteristics of single breast tumor cells (MDA-MB-231 cell line). I found that IFs carried away the cell-secreted adhesion molecules, fibronectin, and subsequently promoted amoeboid over mesenchymal cell morphology and motility. Most importantly, IFs inhibited tumor cells’ ability to spread. Fourth, I studied roles of IFs in tumor spheroid invasion. For mono-culture spheroid (MDA-MB-231 cells supplemented with Matrigel), IFs inhibited tumor cell invasion. For co-culture tumor spheroids made of 1:1 mixture of malignant and non-tumorigenic epithelial cells, IFs promoted tumor cell invasion via downregulating cell-cell adhesion E-cadherin of non-tumorigenic cells. In summary, my work revealed that IFs inhibited tumor cell invasion in both single cell and mono-culture spheroid models via modulating cell-ECM adhesion. In contrast, IFs promoted tumor cell invasion in the co-culture spheroid model via downregulating cell-cell adhesion of the non-tumorigenic cells. My work highlighted the importance of biophysical parameter, IF, in regulating cell-ECM and cell-cell adhesion, and consequently modulating tumor invasion.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2019-05-30

Publisher

Keywords

Microfluidic; Biomedical engineering; biophysical; Interstitial flow; tumor cell invasion; tumor microenvironment; tumor spheroid; Bioengineering

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Wu, Mingming

Committee Co-Chair

Committee Member

Shuler, Michael Louis
Lammerding, Jan

Degree Discipline

Biological and Environmental Engineering

Degree Name

Ph.D., Biological and Environmental Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Attribution 4.0 International

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record