Show simple item record

dc.contributor.authorCai, Jin-yien_US
dc.date.accessioned2007-04-23T17:11:50Z
dc.date.available2007-04-23T17:11:50Z
dc.date.issued1985-12en_US
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR85-715en_US
dc.identifier.urihttps://hdl.handle.net/1813/6555
dc.description.abstractWe consider how much error a fixed depth Boolean circuit has to make for computing the parity function. We show that with an exponential bound of the form $exp(n^{\lambda})$ on the size of the circuits, they make asymptotically 50% error on all possible input, uniformly. As a consequence, we show that with a random oracle set $A,Pr.(PSPACE^{A} \supseteq PH^{A} = 1$.en_US
dc.format.extent1163929 bytes
dc.format.extent450424 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titleWith Probability One, a Random Oracle Separates PSPACE from the Polynomial-Time Hierarchyen_US
dc.typetechnical reporten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics