Show simple item record

dc.contributor.authorBorodin, Allan B.en_US
dc.contributor.authorDemers, Alan J.en_US
dc.date.accessioned2007-04-23T17:10:49Z
dc.date.available2007-04-23T17:10:49Z
dc.date.issued1976-07en_US
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR76-284en_US
dc.identifier.urihttps://hdl.handle.net/1813/6540
dc.description.abstractIn Valiant [11] and Schnorr [9], concepts of "functional self-reducibility" are introduced and investigated. We concentrate on the class NP and on the NP hierarchy of Meyer and Stockmeyer [7] to further investigate these ideas. Assuming that the NP hierarchy exists (specifically, assuming that $P \stackrel{\subset}{+} NP = \sum^{P}_{1} \stackrel{\subset}{+} \sum^{P}_{2}$ we show that, while every complete set in $\sum^{P}_{2}$ is functionally self-reducible, there exist sets in $\sum^{P}_{2}$ which are not functionally self-reducible.en_US
dc.format.extent668570 bytes
dc.format.extent230184 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titleSome Comments on Functional Self-Reducibility and the NP Hierarchyen_US
dc.typetechnical reporten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics