Show simple item record

dc.contributor.authorCai, Jin-yien_US
dc.contributor.authorMeyer, Gabriele E.en_US
dc.date.accessioned2007-04-23T17:10:00Z
dc.date.available2007-04-23T17:10:00Z
dc.date.issued1985-06en_US
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR85-688en_US
dc.identifier.urihttps://hdl.handle.net/1813/6528
dc.description.abstractIn their excellent paper, C.H. Papadimitriou and M. Yannakakis [PY] asked whether the minimal-3-uncolorability problem is, among other Critical Problems, $D_{p}$-complete. This paper gives an affirmative answer to the above question. We show that minimal-$k$-uncolorability is $D_{p}$-complete, for all fixed $k \geq 3$. Furthermore, for $k$ = 3, the reduction can be modified by using "sensitive" gadgets to resolve the planar case, bounded vertex degree case and their combination.en_US
dc.format.extent1684540 bytes
dc.format.extent600573 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titleGraph Minimal Uncolorability is $D_{p}$-Completeen_US
dc.typetechnical reporten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics