Show simple item record

dc.contributor.authorEdelsbrunner, Herberten_US
dc.contributor.authorSeidel, Raimunden_US
dc.date.accessioned2007-04-23T17:08:45Z
dc.date.available2007-04-23T17:08:45Z
dc.date.issued1985-03en_US
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR85-669en_US
dc.identifier.urihttps://hdl.handle.net/1813/6509
dc.description.abstractWe propose a uniform and general framework for defining and dealing with Voronoi Diagrams. In this framework a Voronoi Diagram is a partition of a domain $D$ induced by a finite number of real valued functions on $D$. Valuable insight can be gained when one considers how these real valued functions partition $D \times R$. With this view it turns out that the standard Euclidean Voronoi Diagram of point sets in $R^{d}$ along with its order-$k$ generalizations are intimately related to certain arrangements of hyperplanes. This fact can be used to obtain new Voronoi Diagram algorithms. We also discuss how the formalism of arrangements can be used to solve certain intersection and union problems.en_US
dc.format.extent1462760 bytes
dc.format.extent485765 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titleVoronoi Diagrams and Arrangementsen_US
dc.typetechnical reporten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics