Show simple item record

dc.contributor.authorVan Loan, Charlesen_US
dc.date.accessioned2007-04-23T16:51:08Z
dc.date.available2007-04-23T16:51:08Z
dc.date.issued1984-03en_US
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR84-603en_US
dc.identifier.urihttps://hdl.handle.net/1813/6443
dc.description.abstractThe gist of the CS decomposition is that the blocks of a partitioned orthogonal matrix have related singular value decompositions. In this paper we develop a perturbation theory for the CS decomposition and use it to analyze (a) the total least squares problem, (b) the Golub-Klema-Stewart subset selection algorithm, (c) the algebraic Riccati equation, and (d) the generalized singular value decomposition.en_US
dc.format.extent700888 bytes
dc.format.extent352555 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titleAnalysis of Some Matrix Problems Using the CS Decompositionen_US
dc.typetechnical reporten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics