JavaScript is disabled for your browser. Some features of this site may not work without it.
Using $\cal SEEK$ for Multi-Channel Pattern Recognition

Author
Birman, Kenneth P.
Abstract
Our work on computerized analysis of the 2-channel, 24-hr electrocardiogram has resulted in the development of multi-channel signal processing systems that learn by observation. In this paper a new tool for implementing such algorithms is described: the pattern recognition language $\cal SEEK$. Programs written in $\cal SEEK$ build a knowledge base containing tree-like data structures, each of which stores acquired information about a particular multi-channel waveform. Input data is interpreted by performing an efficient parallel evaluation of the structures in the knowledge base. Our work is applicable to a wide variety of pattern recognition problems that arise in medical signal processing. The approach is illustrated with examples drawn from ECG analysis.
Date Issued
1982-10Publisher
Cornell University
Subject
computer science; technical report
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR82-529
Type
technical report