Show simple item record

dc.contributor.authorVan Loan, Charlesen_US
dc.date.accessioned2007-04-23T16:43:59Z
dc.date.available2007-04-23T16:43:59Z
dc.date.issued1982-05en_US
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR82-494en_US
dc.identifier.urihttps://hdl.handle.net/1813/6334
dc.description.abstractA fast method for computing all the eigenvalues of a Hamiltonian matrix M is given. The method relies on orthogonal symplectic similarity transformations which preserve structure and have desirable numerical properties. The algorithm is about four times faster than the standard Q-R algorithm. The computed eigenvalues are shown to be the exact eigenvalues of a matrix M+E where $\Vert E \Vert$ depends on the square root of the machine precision. The accuracy of a computed eigenvalue depends on its condition and its magnitude, larger eigenvalues typically being more accurate.en_US
dc.format.extent614296 bytes
dc.format.extent204221 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titleA Symplectic Method for Approximating All the Eigenvalues of a Hamiltonian Matrixen_US
dc.typetechnical reporten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics