Show simple item record

dc.contributor.authorKozen, Dexteren_US
dc.date.accessioned2007-04-23T16:37:22Z
dc.date.available2007-04-23T16:37:22Z
dc.date.issued1994-04en_US
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR94-1445en_US
dc.identifier.urihttps://hdl.handle.net/1813/6231
dc.description.abstractThe modular group occupies a central position in many branches of mathematical sciences. In this paper we give average polynomial-time algorithms for the unbounded and bounded membership problems for finitely generated subgroups of the modular group. The latter result affirms a conjecture of Gurevich [FOCS 1990].en_US
dc.format.extent286771 bytes
dc.format.extent329071 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titleEfficient Average-Case Algorithms for the Modular Groupen_US
dc.typetechnical reporten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics