Show simple item record

dc.contributor.authorFredman, Michael L.en_US
dc.contributor.authorRauch, Monika H.en_US
dc.date.accessioned2007-04-23T16:35:26Z
dc.date.available2007-04-23T16:35:26Z
dc.date.issued1994-04en_US
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR94-1420en_US
dc.identifier.urihttps://hdl.handle.net/1813/6202
dc.description.abstractWe prove lower bounds on the complexity of maintaining fully dynamic $k$-edge or $k$-vertex connectivity in plane graphs and in $(k-1)$-vertex connected graphs. We show an amortized lower bound of $\Omega(\log n/k(\log\log n + \log b))$ per edge insertion or deletion or per query operation in the cell probe model, where $b$ is the word size of the machine and $n$ is the number of vertices in $G$. We also show an amortized lower bound of $\Omega(\log n/(\log\log n + \log b))$ per operation for fully dynamic planarity testing in embedded graphs. These are the first lower bounds for dynamic connectivity problems.en_US
dc.format.extent985471 bytes
dc.format.extent314727 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titleLower Bounds for Dynamic Connectivity Problems in Graphsen_US
dc.typetechnical reporten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics