Show simple item record

dc.contributor.authorChew, L. Paulen_US
dc.date.accessioned2007-04-23T16:29:25Z
dc.date.available2007-04-23T16:29:25Z
dc.date.issued1993-05en_US
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR93-1348en_US
dc.identifier.urihttps://hdl.handle.net/1813/6118
dc.description.abstractGiven a set of $n$ moving points in the plane, how many topological changes occur in the Voronoi diagram of the points? If each point has constant velocity then there is an upper bound of $O(n^{3})$ [Guibas, Mitchell and Roos] and an easy lower bound of $\Omega(n^{2})$. It is widely believed that the true upper bound should be close to $O(n^{2})$. We show this belief to be true for the case of Voronoi diagrams based on the $L_{1}$ (or $L_{\infty}$) metric; the number of changes is shown to be $O(n^{2} \alpha (n))$ where $\alpha(n)$ grows so slowly it is effectively a small constant for all reasonable values of $n$.en_US
dc.format.extent664505 bytes
dc.format.extent159046 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titleNear-Quadratic Bounds for the $L_{1}$ Voronoi Diagram of Moving Pointsen_US
dc.typetechnical reporten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics