Show simple item record

dc.contributor.authorRubinfeld, Ronitten_US
dc.contributor.authorZippel, Richarden_US
dc.date.accessioned2007-04-23T16:27:29Z
dc.date.available2007-04-23T16:27:29Z
dc.date.issued1993-01en_US
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR93-1326en_US
dc.identifier.urihttps://hdl.handle.net/1813/6092
dc.description.abstractIn this paper, we present a technique that uses a new interpolation scheme to reconstruct a multivariate polynomial factorization from a number of univariate factorizations. Whereas other interpolation algorithms for polynomial factorization depend on various extensions of the Hilbert irreducibility theorem, our approach is the first to depend only upon the classical formulation. The key to our technique is the interpolation scheme for multivalued black boxes originally developed by Ar et. al. [1]. We feel that this combination of the classical Hilbert irreducibility theorem and multivalued black boxes provides a particularly simple and intuitive approach to polynomial factorization.en_US
dc.format.extent1671755 bytes
dc.format.extent330964 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titleA New Modular Interpolation Algorithm for Factoring Multivariate Polynomialsen_US
dc.typetechnical reporten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics