Show simple item record

dc.contributor.authorPaul, Wolfgang J.en_US
dc.date.accessioned2007-04-19T19:11:43Z
dc.date.available2007-04-19T19:11:43Z
dc.date.issued1974-12en_US
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR74-222en_US
dc.identifier.urihttps://hdl.handle.net/1813/6061
dc.description.abstractConsider the combinational complexity L(f) of Boolean functions over the basis $\Omega = \{f|f:\{0,1\}^{2} \rightarrow \{0,1\}\}$. A new Method for proving linear lower bounds of size 2n is presented. Combining it with methods presented in [7] and [9], we establish for a special set of functions $f^{n}:\{0,1\} : 2.25n \leq L(f) \leq 6n$.en_US
dc.format.extent844251 bytes
dc.format.extent335272 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.title2.25 N-Lower Bound on the Combinational Complexity of Boolean Functionsen_US
dc.typetechnical reporten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics