Show simple item record

dc.contributor.authorZemke, Drew
dc.date.accessioned2018-10-23T13:21:54Z
dc.date.available2018-10-23T13:21:54Z
dc.date.issued2018-05-30
dc.identifier.otherZemke_cornellgrad_0058F_10779
dc.identifier.otherhttp://dissertations.umi.com/cornellgrad:10779
dc.identifier.otherbibid: 10489422
dc.identifier.urihttps://hdl.handle.net/1813/59338
dc.description.abstractWe investigate two ways in which a surface embedded or immersed in a manifold can reveal information about topology of the ambient space. In particular, we prove a special case of the Simple Loop Conjecture for 3-Manifolds and the study trisections of 4-manifolds from the perspectives of the mapping class group and the curve complex of a surface.
dc.language.isoen_US
dc.subjectMathematics
dc.titleSurfaces in Three- and Four-Dimensional Topology
dc.typedissertation or thesis
thesis.degree.disciplineMathematics
thesis.degree.grantorCornell University
thesis.degree.levelDoctor of Philosophy
thesis.degree.namePh. D., Mathematics
dc.contributor.chairManning, Jason F.
dc.contributor.committeeMemberHolm, Tara S.
dc.contributor.committeeMemberRiley, Timothy R.
dcterms.licensehttps://hdl.handle.net/1813/59810
dc.identifier.doihttps://doi.org/10.7298/X4VT1Q9D


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics