eCommons

 

Computational Complexity of Random Access Stored Program Machines

Other Titles

Abstract

In this paper we explore the computational complexity measure defined by running times of programs on random access stored program machines, RASP'S. The purpose of this work is to study more realistic complexity measures and to provide a setting and some techniques to explore different computer organizations. The more interesting results of this paper are obtained by an argument about the size of the computed functions. For example, we show (without using diagonalization) that there exist arbitrarily complex functions with optimal RASP programs whose running time cannot be improved by any multiplicative constant. We show, furthermore, that these optimal programs cannot be fixed prodecures and self-modifying programs. The same technique is used to compare computation speed of machines with and without built in multiplication. We conclude the paper with a look at machines with associative memory and distributed logic machines.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1970-08

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR70-70

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record