JavaScript is disabled for your browser. Some features of this site may not work without it.
A Recursive Relation for the Determinant of a Pentadiagonal Matrix
dc.contributor.author | Sweet, Roland A. | en_US |
dc.date.accessioned | 2007-04-09T21:01:48Z | |
dc.date.available | 2007-04-09T21:01:48Z | |
dc.date.issued | 1968-05 | en_US |
dc.identifier.citation | http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR68-16 | en_US |
dc.identifier.uri | https://hdl.handle.net/1813/5871 | |
dc.description.abstract | A recursive relation is developed for the determinant of a pentadiagonal matrix $S$ which satisfies $s_{i,j} \neq 0$ for $|i-j|=1$. When $S$ is symmetric, one has a six-term recursive relation. An example is given to illustrate its use in the computation of eigenvalues. | en_US |
dc.format.extent | 425371 bytes | |
dc.format.extent | 176968 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/postscript | |
dc.language.iso | en_US | en_US |
dc.publisher | Cornell University | en_US |
dc.subject | computer science | en_US |
dc.subject | technical report | en_US |
dc.title | A Recursive Relation for the Determinant of a Pentadiagonal Matrix | en_US |
dc.type | technical report | en_US |