Show simple item record

dc.contributor.authorDriscoll, Tobin A.en_US
dc.contributor.authorToh, Kim-Chuanen_US
dc.contributor.authorTrefethen, Lloyd N.en_US
dc.date.accessioned2007-04-04T16:31:09Z
dc.date.available2007-04-04T16:31:09Z
dc.date.issued1996-06en_US
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.tc/96-245en_US
dc.identifier.urihttps://hdl.handle.net/1813/5577
dc.description.abstractThe theory of the convergence of Krylov subspace iterations for linear systems of equations (conjugate gradients, biconjugate gradients, GMRES, QMR, Bi-CGSTAB, ...) is reviewed. For a computation of this kind, an estimated asymptotic convergence factor rho less than 1 can be derived by solving a problem of potential theory or conformal mapping. Six approximations are involved in reducing the actual computation to this scalar estimate. These six approximations are discussed in a systematic way and illustrated by a sequence of examples computed with tools of numerical conformal mapping and semidefinite programming.en_US
dc.format.extent643661 bytes
dc.format.extent700901 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjecttheory centeren_US
dc.titleMatrix Iterations: The Six Gaps Between Potential Theory and Convergenceen_US
dc.typetechnical reporten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics