Show simple item record

dc.contributor.authorBranch, Mary Annen_US
dc.contributor.authorColeman, Thomas F.en_US
dc.contributor.authorLi, Yuyingen_US
dc.date.accessioned2007-04-04T16:13:52Z
dc.date.available2007-04-04T16:13:52Z
dc.date.issued1995-07en_US
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.tc/95-217en_US
dc.identifier.urihttps://hdl.handle.net/1813/5553
dc.description.abstractA subspace adaption of the Coleman-Li trust region and interior method is proposed for solving large-scale bound-constrained minimization problems. This method can be implemented with either sparse Cholesky factorization or conjugate gradient computation. Under reasonable conditions the convergence properties of this subspace trust region method are as strong as those of its full-space version. Computational performance on various large-scale test problems are reported; advantages of our approach are demonstrated. Our experience indicates our proposed method represents an efficient way to solve large-scalebound-constrained minimization problems.en_US
dc.format.extent263596 bytes
dc.format.extent251354 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjecttheory centeren_US
dc.subjectInterior methoden_US
dc.subjecttrust region methoden_US
dc.subjectnegative curvature directionen_US
dc.subjectinexact Newton stepen_US
dc.subjectconjugate gradientsen_US
dc.subjectbound-constrained problemen_US
dc.subjectbox-constraintsen_US
dc.titleA Subspace, Interior, and Conjugate Gradient Method for Large-scale Bound-constrained Minimization Problemsen_US
dc.typetechnical reporten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics