JavaScript is disabled for your browser. Some features of this site may not work without it.
Dynamic Hedging with a Deterministic Local Volatility Function Model

Author
Coleman, Thomas F.; Kim, Yohan; Li, Yuying; Verma, Arun
Abstract
We compare the dynamic hedging performance of the deterministic local volatility function approach with the implied/constant volatility method. Using an example in which the underlying price follows an absolute diffusion process, we illustrate that hedge parameters computed from the implied/constant volatility method can have significant error even though the implied volatility method is able to calibrate the current option prices of different strikes and maturities. In particular the delta hedge parameter produced by the implied/constant volatility method is consistently significantly larger than that of the exact delta when the underlying price follows an absolute diffusion.
Date Issued
2003-01-23Publisher
Cornell University
Subject
theory center
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.tc/2003-276
Type
technical report