eCommons

 

Geodynamic evolution of the lithosphere and upper mantle beneath the Alboran region of the western Mediterranean: Constraints from travel time tomography

Other Titles

Abstract

A number of different geodynamic models have been proposed to explain the extension that occurred during the Miocene in the Alboran Sea region of the western Mediterranean despite the continued convergence and shortening of northern Africa and southern Iberia. In an effort to provide additional geophysical constraints on these models, we performed a local, regional, and teleseismic tomographic travel time inversion for the lithospheric and upper mantle velocity structure and earthquake locations beneath the Alboran region in an area of 800 x 800 km^2. We picked P and S arrival times from digital and analog seismograms recorded by 96 seismic stations in Morocco and Spain between 1989 and 1996 and combined them with arrivals carefully selected from local and global catalogs (1964-1998) to generate a starting data set containing over 100,000 arrival times. Our results indicate that a N-S line of intermediate depth earthquakes extending from crustal depths significantly inland from the southern Iberian coat to depths of over 100 km beneath the center of the Alboran Sea coincided with a W to E transition from high to low velocities imaged in the uppermost mantle. A high-velocity body, striking approximately NE-SW, is imaged to dip southeastwards from lithospheric depths beneath the low-velocity region to depths of ~350 km. Between 350 and 500 km the imaged velocity anomalies become more diffuse. However, pronounced high-velocity anomalies are again imaged at 600 km near an isolated cluster of deep earthquakes. In addition to standard tomographic methods of error assessment, the effects of systematic and random errors were assessed using block shifting and bootstrap resampling techniques, respectively. We interpret the upper mantle high-velocity anomalies as regions of colder mantle that originate from lithospheric depths. These observations, when combined with results from other studies, suggest that delamination of a continental lithosphere played an important role in the Neogene and Quaternary evolution of the region.

Journal / Series

Volume & Issue

Description

An edited version of this paper was published by the American Geophysical Union. Copyright 2000, AGU. See also: http://www.agu.org/pubs/crossref/2000/2000JB900024.shtml; http://atlas.geo.cornell.edu/morocco/publications/calvert2000.htm

Sponsorship

Date Issued

2000

Publisher

American Geophysical Union

Keywords

Western Mediterranean; Alboran Sea; Velocity Tomography; Earthquakes; Betic Mountains; Rif Mountains; Geodynamic Evolution of northern Morocco

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Journal of Geophysical Research, vol. 105, p. 10871-10898, 2000

Government Document

ISBN

ISMN

ISSN

0148-0227

Other Identifiers

Rights

Rights URI

Types

periodical

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record