eCommons

 

Deep Learning For Robotics

Other Titles

Author(s)

Abstract

Robotics faces many unique challenges as robotic platforms move out of the lab and into the real world. In particular, the huge amount of variety encountered in real-world environments is extremely challenging for existing robotic control algorithms to handle. This necessistates the use of machine learning algorithms, which are able to learn controls given data. However, most conventional learning algorithms require hand-designed parameterized models and features, which are infeasible to design for many robotic tasks. Deep learning algorithms are general non-linear models which are able to learn features directly from data, making them an excellent choice for such robotics applications. However, care must be taken to design deep learning algorithms and supporting systems appropriate for the task at hand. In this work, I describe two applications of deep learning algorithms and one application of hardware neural networks to difficult robotics problems. The problems addressed are robotic grasping, food cutting, and aerial robot obstacle avoidance, but the algorithms presented are designed to be generalizable to related tasks.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2016-02-01

Publisher

Keywords

Robotics; Machine learning; Deep learning

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Saxena,Ashutosh

Committee Co-Chair

Committee Member

Snavely,Keith Noah
Manohar,Rajit
Knepper,Ross A

Degree Discipline

Computer Science

Degree Name

Ph. D., Computer Science

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record