eCommons

 

Escherichia Coli Transport Modeling At Soil Column Scale And Watershed Scale

Other Titles

Abstract

Understanding the transport of Escherichia coli at different scales is very important for water quality control and public health. Therefore, E. coli transport modeling was conducted at both soil column scale and watershed scale. At soil column scale, first, a small-scale rainfall experiment was conducted in which E. coli was mixed with a simple soil composed of sand (250-300 [MICRO SIGN]m) and clay with the mass ratio of 9:1. By applying Hairsine-Rose model and Gao model to the microbial transport simulation, the solute-particle duality of microbes was discovered: a solute that does not diffuse is essentially a particle and a particle that does not settle out of suspension is essentially a solute. Then, the co-transport of clay and E. coli was investigated by simulated rainfall over two sets of saturated soil columns infused with E. coli: one set of columns consisted of sand and the other consisted of a 9:1 sand-clay mixture. Based on a combination of empirical and modeling results it was concluded that any role clay particles play in facilitating bacteria transport is offset by its role in decreasing the penetration depth and the effectiveness of raindrop impact. At last, the conclusions from the soil column scale studies were applied to the understanding and prediction of E. coli concentration and loading in a stream, and it was found that the level of E. coli in a stream is driven by four independent processes-runoff and erosion, microbial activity, shallow subsurface flow, and groundwater, and the importance of the processes at Fall Creek Watershed decreases by the order.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2015-08-17

Publisher

Keywords

microbial transport; sediment; waterborne pathogen

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Walter,Michael Todd

Committee Co-Chair

Committee Member

Parlange,Jean-Yves
Schneider,Rebecca L.

Degree Discipline

Agricultural and Biological Engineering

Degree Name

Ph. D., Agricultural and Biological Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record