eCommons

 

Probabilistic Hashing Techniques For Big Data

Other Titles

Abstract

We investigate probabilistic hashing techniques for addressing computational and memory challenges in large scale machine learning and data mining systems. In this thesis, we show that the traditional idea of hashing goes far beyond near-neighbor search and there are some striking new possibilities. We show that hashing can improve state of the art large scale learning algorithms, and it goes beyond the conventional notions of pairwise similarities. Despite being a very well studied topic in literature, we found several opportunities for fundamentally improving some of the well know textbook hashing algorithms. In particular, we show that the traditional way of computing minwise hashes is unnecessarily expensive and without loosing anything we can achieve an order of magnitude speedup. We also found that for cosine similarity search there is a better scheme than SimHash. In the end, we show that the existing locality sensitive hashing framework itself is very restrictive, and we cannot have efficient algorithms for some important measures like inner products which are ubiquitous in machine learning. We propose asymmetric locality sensitive hashing (ALSH), an extended framework, where we show provable and practical efficient algorithms for Maximum Inner Product Search (MIPS). Having such an efficient solutions to MIPS directly scales up many popular machine learning algorithms. We believe that this thesis provides significant improvements to some of the heavily used subroutines in big-data systems, which we hope will be adopted.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2015-08-17

Publisher

Keywords

Large Scale Machine Learning; Randomized Algorithms for Big-Data; Hashing, Sketching

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Li,Ping

Committee Co-Chair

Committee Member

Gehrke,Johannes E.
Samorodnitsky,Gennady

Degree Discipline

Computer Science

Degree Name

Ph. D., Computer Science

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record