eCommons

 

Characterization Of Microfluidic Shear-Dependent Immunocapture And Enrichment Of Cancer Cells From Blood Cells With Dielectrophoresis

Other Titles

Author(s)

Abstract

In this work, we investigate the effects of dielectrophoresis (DEP) on microfluidic immunocapture of prostate cancer and pancreatic cancer cells. We make novel measurements of these cancer cells' DEP response, and characterize the combination of DEP and immunocapture techniques as a function of shear stress in a Hele-Shaw flow cell with interdigitated electrodes. At the same applied electric field frequency, we demonstrate enhanced capture of cancer cells by attracting them to immunocapture surfaces with positive DEP and reduced nonspecific adhesion of peripheral blood mononuclear cells (PBMCs) by repelling them from immunocapture surfaces with negative DEP. Using an exponential capture model, we show that immunocapture performance is dependent on the applied DEP force sign and magnitude, cell and immunocapture surface chemistry, and shear stress experienced by cells flowing in the capture device. These data inform the simulation of cancer cell and blood cell capture probabilities to design future hybrid DEP and immunocapture device geometries with improved rare cell capture performance.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2014-08-18

Publisher

Keywords

Dielectrophoresis; Microfluidics; Cancer

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Kirby, Brian

Committee Co-Chair

Committee Member

Weiss, Robert S.
Daniel, Susan

Degree Discipline

Biomedical Engineering

Degree Name

Ph. D., Biomedical Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record