Show simple item record

dc.contributor.authorFolch, David C.
dc.contributor.authorArribas-Bel, Daniel
dc.contributor.authorKoschinsky, Julia
dc.contributor.authorSpielman, Seth E.
dc.description.abstractThe U.S. Census Bureau's American Community Survey (ACS) is the foundation of social science research, much federal resource allocation and the development of public policy and private sector decisions. However, the high uncertainty associated with some of the ACS's most frequently used estimates can jeopardize the accuracy of inferences based on these data. While there is high level understanding in the research community that problems exist in the data, the sources and implications of these problems have been largely overlooked. Using 2006-2010 ACS median household income at the census tract scale as the test case (where a third of small-area estimates have higher than recommend errors), we explore the patterns in the uncertainty of ACS data. We consider various potential sources of uncertainty in the data, ranging from response level to geographic location to characteristics of the place. We find that there exist systematic patterns in the uncertainty in both the spatial and attribute dimensions. Using a regression framework, we identify the factors that are most frequently correlated with the error at national, regional and metropolitan area scales, and find these correlates are not consistent across the various locations tested. The implication is that data quality varies in different places, making cross-sectional analysis both within and across regions less reliable. We also present general advice for data users and potential solutions to the challenges identified.en_US
dc.titleUncertain Uncertainty: Spatial Variation in the Quality of American Community Survey Estimatesen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record