eCommons

 

Phenotypic, Molecular And Genetic Characterization Of Developmental Defects In Ddx11 And Mgrn1 Mutant Mice

Other Titles

Abstract

Early stages in the development of the mouse embryo are characterized by rapid growth and dynamic changes in patterning and morphology. However, technical challenges in accessing and manipulating embryos after implantation in the uterus have hampered the identification of genes involved in these processes. Here I present the characterization of two mouse mutants, cetus and Mgrn1md-nc. Together these studies have uncovered novel roles for genes in regulating early development and patterning of the mouse embryo. cetus mutants were isolated from a forward genetic screen for recessive mutations which disrupt the overall morphology of the developing embryo. cetus embryos are small with defects in closure of the neural epithelium and a severe reduction in somitic mesoderm. Interestingly, positional cloning of cetus revealed a novel point mutation in helicase motif V of the DEAD/Hbox helicase, Ddx11. I found that the cetus mutation in Ddx11 results in widespread apoptosis at early embryonic stages without disrupting proliferation. These studies identified novel, tissuespecific requirements for DDX11 during mouse development and show that helicase motif V is essential for these processes. Mgrn1md-nc is a spontaneous, semi-lethal mutation that results in loss of MGRN1 (Mahogunin RING-finger 1). While the effects of loss of MGRN1 on pigmentation are well studied in Mgrn1md-nc mutant mice, the developmental defects in these mice have not been well characterized. I found that loss of MGRN1 results in the mis-expression of nodal target genes controlling left-right patterning including Lefty1, Lefty2 and Pitx2, resulting in congenital heart defects and death in ~50% of embryos. My characterization of Mgrn1 mutants uncovered a role for this ubiquitin ligase in the regulation of Nodal signaling and left-right patterning. To this date, MGRN1 remains the only ubiquitin ligase to have been identified with a direct role in leftright patterning.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2012-05-27

Publisher

Keywords

mgrn1; ddx11; Left-right patterning; DEAD/H Helicase; mesoderm

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Garcia-Garcia, Maria J

Committee Co-Chair

Committee Member

Roberson, Mark Stephen
Wolfner, Mariana Federica
Schimenti, John C.

Degree Discipline

Physiology

Degree Name

Ph. D., Physiology

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record