Show simple item record

dc.contributor.authorBardowell, Sabrinaen_US
dc.date.accessioned2013-01-31T19:44:28Z
dc.date.available2017-12-20T07:00:30Z
dc.date.issued2012-08-20en_US
dc.identifier.otherbibid: 7959897
dc.identifier.urihttps://hdl.handle.net/1813/31140
dc.description.abstractVitamin E is a group of compounds that are considered to be the most important lipophilic antioxidants, however there is still much unknown about the biological actions of the various forms of vitamin E as well as the mechanisms that influence the concentration of vitamin E forms in tissues. Despite the common predominance of mainly [gamma]-tocopherol ([gamma]-TOH) in the diet, [alpha]-TOH is present in serum and tissues at levels 5-6 times that of [gamma]-TOH. The biological rational for this selectivity remains an enigma. The focus of this work was on the selective postabsorptive catabolism of non-[alpha]-TOH forms via the vitamin E-[omega]-oxidation pathway. Cytochrome P450 4F2 (CYP4F2) is the only known human enzyme shown to display TOH-[omega]-hydroxylase activity. In an effort to investigate the role of TOH-[omega]-hydroxylase activity in vitamin E metabolism and status, the functional murine ortholog of CYP4F2 was identified and the consequences of its deletion on vitamin E metabolism and status were determined. In vivo and in vitro studies revealed Cyp4f14 to be the major, but not the only, vitamin E-[omega]-hydroxylase in mice, and to have critical function in regulating body-wide vitamin E status. Disruption of Cyp4f14 expression resulted in hyper-accumulation of [gamma]-TOH in mice fed a soybean oil diet in which the major tocopherol was [gamma]-TOH. Supplementation of Cyp4f14-/- mice with high levels of [delta]- and [gamma]-TOH exacerbated the tissue enrichment of these forms of vitamin E. Through the use of metabolic cage studies, previously unappreciated mechanisms of vitamin E elimination were discovered, which served to counterbalance the metabolic deficit observed in Cyp4f14-/- mice. Fecal elimination of unmetabolized TOHs was determined to be a high capacity mechanism to be minimize diet induced accumulation of TOHs, especially at high dietary levels. Additionally, novel [omega]-1 and [omega]-2 vitamin E hydroxylase activities were discovered and were found to quantitatively important vitamin E elimination mechanisms. Cyp4f14-/- mice also revealed the existence of other hepatic TOH-[omega]-hydroxylase enzyme(s). Therefore genetically modified mice, in which no CYP activity was present in the liver, were utilized in order to eliminate all hepatic vitamin E metabolism. Metabolic cage studies revealed the presence of vitamin E hydroxylase activity in non-hepatic tissues. Mouse and human small intestine mucosa were found to have TOH-[omega]-hydoxylase activity, representing at least one site of extra-hepatic vitamin E metabolism. Lastly, the use of cell culture studies demonstrated that two polymorphisms in CYP4F2 functionally alter TOH-[omega]-hydroxylase activity, which may play a role in vitamin E status in humans. Overall, the current works lends new insights into the physiological role of the TOH-[omega]oxidation pathway as well as reveals novel mechanisms of vitamin E metabolism in both mice and humans, which play an important role in the regulation of vitamin E status.en_US
dc.language.isoen_USen_US
dc.subjectvitamin Een_US
dc.subjectcytochrome P450en_US
dc.subjectmetabolismen_US
dc.titleThe Role Of Vitamin E Hydroxylases In Vitamin E Metabolism And Statusen_US
dc.typedissertation or thesisen_US
thesis.degree.disciplineNutrition
thesis.degree.grantorCornell Universityen_US
thesis.degree.levelDoctor of Philosophy
thesis.degree.namePh. D., Nutrition
dc.contributor.chairParker, Robert Stanleyen_US
dc.contributor.committeeMemberCassano, Patricia Annen_US
dc.contributor.committeeMemberGu, Zhenglongen_US
dc.contributor.committeeMemberO'Brien, Kimberly Oen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics