eCommons

 

Learning Random Field Models For Computer Vision

Other Titles

Author(s)

Abstract

Random fields are among the most popular models in computer vision due to their ability to model statistical interdependence between individual variables. Three key issues in the application of random fields to a given problem are (i) defining appropriate graph structures that represent the underlying task, (ii) finding suitable functions over the graph that encode certain preferences, and (iii) performing inference efficiently on the resulting model to obtain a solution. While a large body of recent research has been devoted to the last issue, this thesis will focus on the first two. We first study them in the context of three well-known low-level vision problems, namely image denoising, stereo vision, and optical flow, and demonstrate the benefit of using more appropriate graph structures and learning more suitable potential functions. Moreover we extend our study to landmark classification, a problem in the high-level vision domain where random field models have rarely been used. We show that higher classification accuracy can be achieved by considering multiple images jointly as a random field instead of regarding them as separate entities.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2010-10-20

Publisher

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record