eCommons

 

Probing Weak Copper Chaperone-Wilson Disease Protein Interactions At The Single-Molecule Level With Nanovesicle Trapping

Other Titles

Abstract

Copper is an essential cofactor for many metalloproteins, yet it can also be cytotoxic, therefore, intracellular copper trafficking is tightly regulated. Copper delivery inside cells is mediated by copper chaperones, which bind and deliver copper to their target proteins, preventing adventitious chemical reactions with the metal. Various pathways for copper transport exist; of particular interest to this thesis is the pathway between the copper chaperone Hah1 and Wilson disease protein (WDP). Limited dynamic information is available on how the copper chaperone Hah1 and the metal binding domains (MBDs) of WDP interact for copper transfer. In this thesis, the interaction dynamics of Hah1 and a single MBD of WDP is investigated. Since these protein-protein interactions are relatively weak in nature, a nanovesicle trapping strategy is used to increase the effective concentration of single molecules (Chapter 2). Individual interaction events are then monitored by single-molecule Forster resonance energy transfer (smFRET). The interaction dynamics of Hah1 and the fourth MBD (MBD4) of WDP are initially studied in the absence of copper. The protein-protein interaction scheme and associated rate constants for the interaction process are extracted from the FRET efficiency (EFRET) and waiting-time distributions (Chapter 3). The EFRET distributions obtained from interactions in the absence and presence of copper are then used to gain insight on the underlying copper transfer process (Chapter 4).

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2010-10-20

Publisher

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record