JavaScript is disabled for your browser. Some features of this site may not work without it.
Shock Accelerated Vortex Ring

Author
Haehn, Nicholas; Weber, Chris; Oakley, Jason; Anderson, Mark; Rothamer, David; Bonazza, Riccardo
Abstract
The interaction of a shock wave with a spherical density inhomogeneity leads to the development of a vortex ring through the impulsive deposition of baroclinic vorticity. This phenomenon is experimentally investigated at the Wisconsin Shock Tube Laboratory’s (WiSTL) 9.2 m, downward firing shock tube. The tube has a square internal cross-section (0.25 m x 0.25 m) with multiple fused silica windows for optical access. The spherical soap bubble is generated by means of a pneumatically retracted injector, and released into free-fall 200 ms prior to initial shock acceleration. The downward moving, M = 2.07 shock wave impulsively accelerates the bubble and reflects off the tube end wall. The reflected shock wave re-accelerates the bubble (reshock), which has now developed into a vortex ring, depositing additional vorticity. In the absence of any flow disturbances, the flow behind the reflected shock wave is stationary. As a result, any observed motion of the vortex ring is due to circulation. The shocked vortex ring is imaged at 12,500 fps with planar Mie scattering.
Date Issued
2009-10-16Subject
Shock; Instability; Bubble; Vortex Ring
Type
video/moving image