JavaScript is disabled for your browser. Some features of this site may not work without it.
Sample Path Properties of Self-Similar Processes with Stationary Increments

Author
Vervaat, Wim
Abstract
A real-valued process X=(X(t))telR is self-similar with exponent H (H-ss), if X(a.)d aHX for all a>0. Sample path properties of H-ss processes with stationary increments are investigated. The main result is that the sample paths have nowhere bounded variation if 0<H<1, unless X(t) tX(1) and H=1, and apart from this can have locally bounded variation only for H>1, in which case they are singular. Surprisingly, nowhere bounded variation may occur also for H>1. The first example in the literature exhibiting this combination properties is constructed, as well as many others. All examples are obtained by subordination of random measures to point processes in in R2 that are Poincare, i.e., invariant in distribution for the transformations (t,x)->(at+b,ax) of R2. In a final section two ways of combining two ss processes with stationary increments into new ones are studied, one of them being composition of random functions X1oX2=(X1(X1X2(t)))teR.
Journal/Series
545
Description
Vervaat was visitor from Katholieke Universiteit, Nijmegen.
Sponsorship
School of ORIE,
Center of Applied Mathematics at Cornell University,
NATO Science Fellowship from the Netherlands Organization for the Advancement of Pure Research (ZWO) and Fulbright-Hays travel grant.
Date Issued
2009-07-02Subject
self-similar processes; stationary increments; bounded variatiion of sample paths; subordination to point processes; Poincare point processes; random measures; stable processes; fractional processes
Type
technical report
Related items
Showing items related by title, author, creator and subject.
-
Point processes associated with stationary stable processes
Resnick, S.; Samorodnitsky, G. (Cornell University Operations Research and Industrial Engineering, 2003-11)Point processes associated with stationary stable processes -
Super-extremal processes and the argmax process
Resnick, S.; Roy, R. (Cornell University Operations Research and Industrial Engineering, 1991-05)Super-extremal processes and the argmax process -
Derivation of the Probability Mass Function of a Pure Birth Process from a Death Process
Hernandez-Suarez, Carlos M.; Cornell University. Biometrics Unit.; Cornell University. Dept. of Biometrics.; Cornell University. Dept. of Biological Statistics and Computational Biology. (1996)