eCommons

 

Magnetism and Magnetotransport in Complex Oxide Thin Film Heterostructures

Other Titles

Abstract

The nature of magnetism at thin film surfaces and interfaces is not yet fully understood, yet it is quite important for both fundamental studies and technological applications. In this dissertation, I present a study of the magnetism and magnetotransport in single thin film layers as well as at interfaces of Fe3O4/spinel chromite/LSMO and Fe3O4/spinel chromite/Fe3O4 heterostructures. To begin with, investigations of single layer thin films on metallic oxides such as perovskite structure SrRuO3 and spinel structure LiTi2O4 elucidate the dependence of transport properties on parameters such as thickness, film strain state, and crystal orientation. In addition, the magnetism of CoFe2O4 thin films is examined while dynamically altering the strain state via the temperature-dependent lattice parameter of piezoelectric BaTiO3 substrates. Detailed spectroscopy experiments indicate that magnetism at the (110) LSMO and (111) LSMO surfaces are not suppressed compared to (001) LSMO interfaces. In addition, no magnetic coupling was observed between LSMO and spinel chromite layers above 100K. In contrast, the (110) Fe3O4 surface exhibited a significant change in anisotropy accompanied by an enhanced magnetization in the spinel chromite layer to beyond room temperature. At the isostructural interface, there is strong ferromagnetic coupling between Fe and Cr ions in bilayers. Our results on Fe3O4 and LSMO surfaces, combined with measurements on the angular, field and temperature dependence of junctions with LSMO and Fe3O4 electrodes, indicate that spin polarization is not intrinsically suppressed at a surface or interface but that magnetization and spin polarization depends on the crystal surface orientation, strain state and surface or interface reconstruction.

Journal / Series

Volume & Issue

Description

Sponsorship

This research was supported by the Office of Naval Research (N00014-97-1-0564) and the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Date Issued

2008-09-18T12:16:21Z

Publisher

Keywords

complex oxide; pulsed laser deposition; manganite; ferrite; thin film; magnetotransport; perovskite; spinel

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record