Show simple item record

dc.contributor.authorTrovitch, Ryan
dc.date.accessioned2008-08-14T13:43:26Z
dc.date.available2013-08-14T06:09:59Z
dc.date.issued2008-08-14T13:43:26Z
dc.identifier.otherbibid: 6563812
dc.identifier.urihttps://hdl.handle.net/1813/11227
dc.description.abstractA series of bis(imino)pyridine iron complexes bearing monoanionic ligands, (PDI)Fe-X (PDI = 2,6-(ArN=CMe)2C5H3N; X = halide, alkyl, alkoxide, carboxylate) has been prepared and the electronic structure of each compound investigated. Combining spectroscopic, X-ray crystallographic, and magnetic data, the electronic structure of the halide, alkoxide, and carboxylate complexes has been described as having a high-spin ferrous center that is antiferromagnetically coupled to a bis(imino)pyridine radical. Magnetic and M?ssbauer spectroscopic data collected on the carboxylate complexes revealed a lower degree of antiferromagnetic coupling for due to a weaker ligand field. The electronic structure of the alkyl complexes appeared highly dependent on field strength of the hydrocarbyl group; sp3-alkyls were found to have high-spin ferrous centers while acetylides had intermediate spin centers. The electronic structure of the alkyl complex, (iPrPDI)Fe-(?3-C3H5), was best described as having an intermediate-spin ferric center antiferromagnetically coupled to two chelate radicals. The preparation of bis(imino)pyridine iron alkyl complexes possessing ?-hydrogen atoms was accomplished from the substoichiometric addition of alkyl bromides to (iPrPDI)Fe(N2)2. Because the electronic structure of the alkyl and halide complexes was elucidated, this reaction has been described as a one-electron oxidative addition, where oxidation occurs at the bis(imino)pyridine ligand rather than the metal. For these alkyls, the kinetic stability of each complex at ambient temperature was inversely proportional to the number of ?-hydrogen atoms present. A series of deuterium labeling experiments confirmed fast and reversible ?-hydrogen elimination and that transfer dehydrogenation of chelate isopropyl groups was a main decomposition pathway. Additionally, the scope of (iPrPDI)Fe(N2)2 mediated olefin hydrogenation has been expanded to include amine, ether, ketone, and ester containing substrates. Conducting stoichiometric experiments between each substrate and (iPrPDI)Fe(N2)2 in the absence of 4 atmospheres of dihydrogen revealed important catalyst degradation pathways. The C-O bond cleavage of allylic and vinylic ethers was observed over the course of hours at ambient temperature while ester addition to (iPrPDI)Fe(N2)2 often resulted in C-O bond cleavage to form the corresponding alkyl and carboxylate complexes. Although the redox-active bis(imino)pyridine chelate is known to stabilize a reducing ferrous center, one electron processes have often resulted in catalyst decomposition.en_US
dc.language.isoen_USen_US
dc.subjectIronen_US
dc.subjectOrganometallicen_US
dc.subjectCatalysisen_US
dc.subjectElectronic Structureen_US
dc.titleIron Complexes with Terdentate Ligands: Preparation, Electronic Structure Determination, and Utility as Catalyst Precursorsen_US
dc.typedissertation or thesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Statistics