eCommons

 

Ab initio study of photoemission processes and photocathode materials for next-generation high-brightness electron emitters

Other Titles

Abstract

This thesis represents the first in-depth ab initio (“first-principles”) study of many-body intricacies of photoemission processes for applications in next-generation high-brightness photoelectron emitters. Here, we focus on studying the Mean Transverse Energy (MTE), the fundamental parameter that limits the brightness, and thus the performance of a photoelectron emitter. We develop the first ab initio photoemission framework capable of calculating the MTE that includes full treatment of the relevant many-body processes, including two-body direct one-photon photoexcitation, three-body coherent electron-photon-phonon scattering, and three-body coherent two-photon photoexcitation. We then use this framework to explain the experimentally observed MTEs and predict the performance of various photocathode materials. Moreover, this thesis also includes a study on mechanical stability of the crystal structures of alkali antimonide photocathodes and clarifies a confusion in the current literature regarding the stable crystal structures of these materials. Finally, we also present a new ab initio framework that ultimately allows studies of photoemission processes in photocathodes with complex surfaces, which are of current and future interest because such complex photocathodes yield better operational lifetimes.

Journal / Series

Volume & Issue

Description

144 pages

Sponsorship

Date Issued

2022-08

Publisher

Keywords

Ab initio; crystal structure stability; density functional theory; many-body scattering; photocathode materials; photoemission

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Arias, Tomas A.

Committee Co-Chair

Committee Member

Clancy, Paulette
Bazarov, Ivan

Degree Discipline

Physics

Degree Name

Ph. D., Physics

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Attribution-NonCommercial 4.0 International

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record