Show simple item record

dc.contributor.authorDi, Xuan (Sharon)
dc.date.accessioned2022-02-22T21:49:37Z
dc.date.available2022-02-22T21:49:37Z
dc.date.issued2021-04-09
dc.identifier.urihttps://hdl.handle.net/1813/110997
dc.descriptionWebinaren_US
dc.description.abstractAs this era’s biggest game-changer, autonomous vehicles (AV) are expected to exhibit new driving and travel behaviors, thanks to their sensing, communication, and computational capabilities. However, a majority of studies assume AVs are essentially human drivers but react faster, “see” farther, and “know” the road environment better. We believe AVs’ most disruptive characteristic lies in its intelligent goal-seeking and adapting behavior. Building on this understanding, we propose a dynamic game-based control leveraging the notion of mean-field games (MFG). Prof. Di will first introduce how MFG can be applied to the decision-making process of a large number of AVs. To illustrate the potential advantage that AVs may bring to stabilize traffic, she will then introduce a multi-class game where AVs are modeled as intelligent game-players and HVs are modeled using a classical non-equilibrium traffic flow model. Last but not the least, she will talk about how the MFG-based control is generalized to road networks, in which the optimal controls of both velocity and route choice need to be solved for AVs, by resorting to nonlinear complementarity problems.en_US
dc.description.sponsorshipU.S. Department of Transportation 69A3551747119en_US
dc.language.isoen_USen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleDynamic Driving and Routing Games for Autonomous Vehicles on Networks: A Mean Field Game Approachen_US
dc.typevideo/moving imageen_US
dc.description.viewer1_zwdlhtxt
schema.accessibilityFeaturecaptionsen_US
schema.accessibilityHazardunknownen_US


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, this item's license is described as Attribution 4.0 International

Statistics