Show simple item record

dc.contributor.authorChang, Christine Y.
dc.contributor.authorSun, Ying
dc.contributor.authorGu, Lianhong
dc.contributor.authorWood, Jeffrey D.
dc.date.accessioned2022-02-09T21:27:25Z
dc.date.available2022-02-09T21:27:25Z
dc.date.issued2022-02-09
dc.identifier.urihttps://hdl.handle.net/1813/110947
dc.descriptionPlease cite as: Chang et al. (2022). Data from: Unpacking the drivers of diurnal dynamics of sun-induced chlorophyll fluorescence (SIF): Canopy structure, plant physiology, instrument configuration and retrieval methods [Dataset]. Cornell University Library eCommons Repository. https://doi.org/10.7298/mqfk-hs97
dc.description.abstractData in support of research: Sun-induced chlorophyll fluorescence (SIF) from spaceborne sensors is a promising tool for global carbon cycle monitoring, but its application is constrained by insufficient understanding of the drivers underlying diurnal SIF dynamics. SIF measurements from ground-based towers can reveal diurnal SIF dynamics across biomes and environmental conditions; however, meaningful interpretation of diurnal variations requires disentangling impacts from canopy structure, plant physiology, instrument configuration and retrieval methods, which often interact with and confound each other. This study aims to unpack these drivers using 1) concurrent ground and airborne canopy-scale and leaf-scale measurements at a corn field, 2) a mechanistic SIF model that explicitly considers the dynamics of photochemistry (via the fraction of open photosystem II reaction centers, qL) and photoprotection (via nonphotochemical quenching, NPQ) as well as their interactive dependence on the sub-canopy light environment, and 3) cross-comparison of SIF instrument configurations and retrieval methods. We found that crop row orientations and sun angles can introduce a distinctive midday dip in SIF in absence of stress, due to a midday drop of absorbed photosynthetically active radiation (APAR) when crop rows are north-south oriented. Canopy structure caused distinctive responses in both qL and NPQ at different positions within the vertical canopy that collectively influenced fluorescence quantum yield (ΦF) at the leaf scale. Once integrated at the canopy scale, diurnal dynamics of both APAR and canopy escape probability (ε) are critical for accurately shaping diurnal SIF variations. While leaf-level qL and NPQ exhibited strong diurnal dynamics, their influence was attenuated at the canopy scale due to opposing effects on SIF at different canopy layers. Furthermore, different system configurations (i.e., bi-hemispherical vs. hemispherical-conical) and retrieval methods can bias the SIF magnitude and distort its diurnal shapes, therefore confounding the interpretation of inherent strength and dynamics of SIF emission. Our findings demonstrate the importance of crop row structures, interactive variations in canopy structure and plant physiology, instrument configuration, and retrieval method in shaping the measured dynamics of diurnal SIF. This study highlights the necessity to account for these factors to accurately interpret satellite SIF, and informs future synthesis work with different SIF instrumentation and retrieval methods across sites.en_US
dc.description.sponsorshipUSDA-NIFA Postdoctoral Fellowship to CYC, Grant #: 2018-67012-27985 USDA-NIFA Hatch Award to YS, Grant #: 1014740 This research is also supported by the US Department of Energy (DOE), Office of Science, Biological and Environmental Research Program. ORNL is managed by UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725.en_US
dc.language.isoen_USen_US
dc.relationNaethe, Paul, & Rascher, Uwe. (2021). Selected clear-sky FloX hyperspectral data (V.0.1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5286019
dc.relation.isreferencedbyChang, C. Y., Wen, J., Han, J., Kira, O., LeVonne, J., Melkonian, J., Riha, S. J., Skovira, J., Ng, S., Gu, L., Wood, J. D., Näthe, P., & Sun, Y. (2021). Unpacking the drivers of diurnal dynamics of sun-induced chlorophyll fluorescence (SIF): Canopy structure, plant physiology, instrument configuration and retrieval methods. Remote Sensing of Environment, 265, 112672. https://doi.org/10.1016/j.rse.2021.112672
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectsun-induced chlorophyll fluorescence (SIF)en_US
dc.subjectdiurnal SIF dynamicsen_US
dc.subjectmechanistic SIF modelen_US
dc.subjectcanopy structureen_US
dc.subjectplant physiologyen_US
dc.subjectcrop row orientationen_US
dc.subjectSIF instrumentationen_US
dc.titleData From: Unpacking the drivers of diurnal dynamics of sun-induced chlorophyll fluorescence (SIF): Canopy structure, plant physiology, instrument configuration and retrieval methodsen_US
dc.typedataseten_US
dc.relation.isreferencedbyurihttps://doi.org/10.1016/j.rse.2021.112672
dc.identifier.doihttps://doi.org/10.7298/mqfk-hs97
schema.accessibilityHazardnoneen_US


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, this item's license is described as Attribution 4.0 International

Statistics